

UMA BREVE DISSERTAÇÃO SOBRE SINCRONISMO NO USO DE TRANSMISSORES REFORÇADORES (ESTAÇÕES COMPLEMENTARES) PARA FM

A) OBJETIVOS DO SINCRONISMO:

Há situações em que a cobertura de uma Emissora de FM apresenta, em uma determinada região, dificuldades na cobertura, principalmente devido a topografia e/ou obstáculos, dessa região.

Nesses casos verifica-se que uma parte importante dessa região, sofre com níveis insuficientes de sinal ou ainda, baixa qualidade desse sinal devido à níveis excessivos de multipath, interferências e/ou outros fenômenos.

Em determinados casos a Emissora poderá ser autorizada a usar um transmissor auxiliar (reforçador) para preencher a região prejudicada, com sinal de qualidade adequada.

A simples instalação de um transmissor reforçador na região afetada, não é solução e poderá até prejudicar a cobertura da Emissora em áreas em que hoje ela tem um sinal adequado, por interferência do sinal do transmissor reforçador.

O sincronismo tem por objetivo obter o melhor resultado possível na instalação desse tipo de transmissor, que efetivamente melhore a cobertura na região problemática e ainda cause um mínimo de interferências nas áreas onde a cobertura do transmissor principal é boa.

Mesmo usando todas as técnicas corretas de sincronismo, sempre haverá uma região ou pontos específicos, entre os dois transmissores, onde haverá um certo nível de interferência.

ASSOCIAÇÃO TÉCNICA DA RADIODIFUSÃO BRASILEIRA B) LISTA DOS FATOS E INFORMAÇÕES QUE VOCÊ PRECISA SABER:

- 1) Receptores: potência/intensidade do sinal recebido;
- 2) Relação de captura dos receptores de FM;
- 3) Sincronismo de transmissores;
- 4) Cabos coaxiais e a velocidade de propagação dos sinais de RF;
- 5) Relação entre potência de dois transmissores e seus níveis de sinal no ar;
- 6) Tipos de Antenas de transmissão;
- 7) Decaimento do sinal de RF em função da distância.
- 8) Oscilador de referência disciplinado de 10MHz, "GPSDO".

C) INFORMAÇÕES:

1) Receptores: potência / intensidade do sinal recebido

O nível do sinal recebido por um receptor de FM é um dos parâmetros responsáveis pelo bom desempenho desse receptor.

O nível de silenciamento (Quieting) de um receptor é o ponto onde, ao se aumentar (a partir do zero) o nível do sinal recebido, há uma abrupta redução do seu nível de ruído. Essa é mais uma das características interessantes do comportamento dos receptores de FM. A partir do ponto de silenciamento, o aumento do nível de sinal recebido tem uma pequena influencia na qualidade e no aumento da relação sinal/ruído. Porém, tem uma enorme influência na rejeição de sinais interferentes;

2) Relação de captura:

Uma característica que é importante e benéfica para as instalações que usam transmissores reforçadores é a relação de captura dos receptores de FM. Ela é expressa em dB, e quantifica o valor da menor relação entre as amplitudes de dois ou mais sinais de RF, operando na mesma frequência, para que um receptor de FM, reproduza apenas o sinal mais forte.

Todo receptor de FM, que esteja na área de cobertura de duas Emissoras, operando na mesma frequência, tem a característica de rejeitar o sinal mais fraco e reproduzir apenas o mais forte.

A relação das intensidades desses sinais, para que isso ocorra é tanto menor quanto maior for a qualidade do receptor utilizado. Receptores de alto desempenho costumam ter relação de captura da ordem de 1,5dB;

- 3) Sincronismo de Portadoras e de áudio.
- Sincronizar transmissores, significa fazer com que todas as características dos sinais por eles emitidos (com exceção da potência), sejam idênticas e relacionadas entre si;
- **4)** Cabos coaxiais e a velocidade de propagação dos sinais de RF; A velocidade de propagação de um sinal de RF é dependente do meio em que ele se propaga. No ar a sua velocidade é de 300.000 km/s (300 mil quilômetros por segundo) e, em meios isolantes como nos cabos coaxiais essa velocidade é menor. Como exemplo, no teflon ela é da ordem de 210.000 km/s.

Isso significa que numa linha a ar, o comprimento físico da linha e igual ao comprimento elétrico do sinal de RF. Já em um cabo coaxial com dielétrico isolante, como teflon, o comprimento físico é aproximadamente 70% do comprimento elétrico.

5) Um mesmo sinal de RF introduzido simultaneamente numa das extremidades de dois cabos coaxiais iguais (porém de comprimentos diferentes), aparecerão nas outras extremidades com rigorosamente a mesma frequência, mas, como chegam primeiro na extremidade do cabo mais curto e logo depois na do mais longo, suas fases relativas serão diferentes.

Os sinais de RF podem ser algebricamente somados - Não considerando as perdas nos cabos ou no percurso, a soma desses sinais poderá ser desde zero, quando a diferença de fases for 180°, até o dobro do valor desses sinais, quando a diferença de fases for igual a 0°.

Um receptor de FM fará, essa operação, em seus circuitos.

Ao receber sinais provenientes de dois ou mais transmissores operando na mesma frequência. A fase com que o sinal de cada transmissor chega ao receptor, determinará a qualidade do áudio reproduzido;

6) Relação entre potência de dois transmissores e seus níveis de sinal no ar: A relação de níveis de sinal de RF no ar é dependente das potências dos transmissores utilizados, é expressa como: $R = \sqrt{P2/P1}$

O que indica que, se você dobra a potência de seu transmissor, o nível de RF no ar não dobra, ele aumenta em √2 ou 40%.

Medidores de campo, não medem potência, medem nível do sinal de RF no local da medição;

7) Antenas:

Em FM são usadas basicamente, os seguintes tipos de antenas:

- a) Omnidirecionais ou Direcionais que podem ser de:
- a1) Polarização horizontal (pouco usada) apresenta sinal apenas no campo horizontal;
- a2) Polarização vertical apresenta sinal apenas no campo vertical;
- **a3)** Polarização circular apresenta sinal simultaneamente nos campos- vertical e horizontal;
- 8) Decaimento do sinal de RF com a distância:

O sinal da sua Emissora decai na razão do inverso do quadrado da distância: S = 1/D² Isso significa que se você medir o nível de sinal da sua Emissora a uma certa distância da Emissora e em seguida medir novamente no dobro dessa distancia, (não considerando as perdas), você verá que o sinal aparecerá reduzido por um fator de quatro. Exemplo: Um receptor localizado em um ponto distante 1km de uma Emissora de 1kW, e a 4km de outra de 16kW, receberá essas duas emissoras com o mesmo nível de sinal;

9) Oscilador de referência de 10MHz, disciplinado (GPSDO):

A forma fácil e precisa de sincronizar portadoras de transmissores de FM é usar em seus PLLs ou DDSs uma mesma referência de "clock", como aqueles gerados por osciladores "GPSDO", que usam o sinal de referência, de satélites GPS.

ASSOCIAÇÃO TÉCNICA DA RADIODIFUSÃO BRASILEIRA D) CRITÉRIOS IMPOSITIVOS DO SISTEMA:

- 1) Os transmissores deverão operar exatamente na mesma frequência;
- 2) As portadoras deverão estar sincronizadas;
- 3) Deverão transmitir exatamente o mesmo conteúdo de programa;
- **4)** As características da modulação dos transmissores deverão ser idênticas obedecendo os mesmos níveis de modulação, processamento e as mesmas respostas de frequência, fase etc.;

E) <u>DETALHES QUE FAZEM A DIFERENÇA:</u>

- 1) Como os transmissores deverão operar rigorosamente na mesma frequência, deverão ter suas portadoras referenciadas por uma mesma base de tempo. Por exemplo: 10MHz proveniente de (GPSDO) por satélite GPS. Esse método é o mais adequado por garantir que as portadoras estarão sempre na mesma frequência e em sincronismo;
- **2)** Preferencialmente, os moduladores dos transmissores deverão ser iguais; os comprimentos dos cabos da saída dos "GPSDO" para os excitadores dos transmissores deverão, preferencialmente, ser iguais e ter o mesmo comprimento;
- **3)** Os conteúdos dos áudios contidos na modulação dos transmissores deverão ser necessariamente idênticos, não somente o programa, mas também todas as suas características tais como: fase, índice de modulação, níveis de processamento, características do processamento, resposta de frequência e fase, níveis de limitação, de picos e etc.
- **4)** Os enlaces, do estúdio à cada um dos transmissores, deverão ser feitos, preferencialmente usando equipamentos iguais, ou que tenham respostas de áudio com características idênticas, garantindo assim a melhor coerência de resposta de frequência e de fase;

- **5)** É importante assegurar que as fases do áudio dos dois transmissores estejam coerentes;
- **6)** Quando o item anterior é integralmente observado, se aparecer um erro de fase de 180°, basta, apenas, a reversão da fase do áudio de um dos transmissores para se obter o sincronismo adequado;
- **7)** As antenas utilizadas, nos transmissores, deverão ser do mesmo tipo de polarização, para se manter níveis de sinal corretos, tanto no campo vertical como no horizontal;
- **8)** Antenas direcionais poderão ser utilizadas com vantagens, pois permitem mais facilmente evitar a sobreposição dos sinais dos dois transmissores;
- **9)** Escolha corretamente a localização dos transmissores e ainda verifique o correto ajuste das suas potências, direção das antenas e fases relativas;
- **10)** As localizações deverão ser feitas, aproveitando-se a topografia e a posição dos obstáculos existentes;
- **11)** Se existir um bloqueio do sinal do transmissor principal para a região onde se quer reforçar o sinal, (Um morro, por ex.) ele poderá ser usado a seu favor simplificando ou facilitando a obtenção de um bom resultado.
- 12) Isso ocorrerá porque os sinais dos dois transmissores tenderão a não se sobrepor;
- **13)** Use no transmissor reforçador um nível de potência adequado para cobrir a região afetada, não ultrapasse esse valor;
- **14)** Como um sistema sincronizado normal, trabalha com dois transmissores, operando na mesma frequência, aparecerá uma zona de interferência, entre esses dois transmissores.
- **15)** Se os transmissores não estiverem sincronizados em RF, essa zona se moverá continuamente de forma cíclica, varrendo uma região considerável, onde a audição da Emissora estará fortemente prejudicada;
- **16)** Com o sincronismo, essa zona de interferência se torna fixa e dentro de certos limites, é possível localizá-la numa posição de menor interesse para a Emissora;

- **17)** O ajuste da fase relativa dos transmissores pode, dentro de certos limites, resolver alguns problemas pontuais;
- **18)** A variação da fase de RF dos transmissores poderá ser feita, facilmente, ajustando os comprimentos dos cabos que levam os sinais dos excitadores, aos transmissores;
- **19)** Em 100MHz, a cada 2,92mm de alteração no comprimento de um cabo de teflon, a fase do sinal de RF, varia aproximadamente 0,5 grau;
- **20)** Depois dos testes e ajustes, as fases relativas dos transmissores poderão apresentar algum grau de deslocamento, mas sempre mantendo o sincronismo; Em um Sistema Sincronizado, receptores com níveis diferentes de qualidade, terão desempenhos diferentes e receberão níveis diferentes de interferência!

João Eduardo Ferreira (Janjão) - Engenheiro. Fev/2025